Robust transcriptional tumor signatures applicable to both formalin-fixed paraffin-embedded and fresh-frozen samples
نویسندگان
چکیده
Formalin-fixed paraffin-embedded (FFPE) samples represent a valuable resource for clinical researches. However, FFPE samples are usually considered an unreliable source for gene expression analysis due to the partial RNA degradation. In this study, through comparing gene expression profiles between FFPE samples and paired fresh-frozen (FF) samples for three cancer types, we firstly showed that expression measurements of thousands of genes had at least two-fold change in FFPE samples compared with paired FF samples. Therefore, for a transcriptional signature based on risk scores summarized from the expression levels of the signature genes, the risk score thresholds trained from FFPE (or FF) samples could not be applied to FF (or FFPE) samples. On the other hand, we found that more than 90% of the relative expression orderings (REOs) of gene pairs in the FF samples were maintained in their paired FFPE samples and largely unaffected by the storage time. The result suggested that the REOs of gene pairs were highly robust against partial RNA degradation in FFPE samples. Finally, as a case study, we developed a REOs-based signature to distinguish liver cirrhosis from hepatocellular carcinoma (HCC) using FFPE samples. The signature was validated in four datasets of FFPE samples and eight datasets of FF samples. In conclusion, the valuable FFPE samples can be fully exploited to identify REOs-based diagnostic and prognostic signatures which could be robustly applicable to both FF samples and FFPE samples with degraded RNA.
منابع مشابه
Comparison of Nanostring nCounter® Data on FFPE Colon Cancer Samples and Affymetrix Microarray Data on Matched Frozen Tissues
The prognosis of colorectal cancer (CRC) stage II and III patients remains a challenge due to the difficulties of finding robust biomarkers suitable for testing clinical samples. The majority of published gene signatures of CRC have been generated on fresh frozen colorectal tissues. Because collection of frozen tissue is not practical for routine surgical pathology practice, a clinical test tha...
متن کاملAmplification of whole tumor genomes and gene-by-gene mapping of genomic aberrations from limited sources of fresh-frozen and paraffin-embedded DNA.
Sufficient quantity of genomic DNA can be a bottleneck in genome-wide analysis of clinical tissue samples. DNA polymerase Phi29 can be used for the random-primed amplification of whole genomes, although the amplification may introduce bias in gene dosage. We have performed a detailed investigation of this technique in archival fresh-frozen and formalin-fixed/paraffin-embedded tumor DNA by using...
متن کاملFresh Frozen Versus Formalin-Fixed Paraffin Embedded for Mass Spectrometry Imaging.
Matrix-Assisted Laser Desorption Ionization (MALDI) Mass Spectrometry Imaging (MSI) is fast becoming an industry leading technique as a means of investigating the distributions of protein and peptide molecules directly from sections of tissue. Developing protocols for the analysis of FFPE tissue opens up numerous opportunities for novel biomarker discovery, due to the large number of tissue ban...
متن کاملComparison of the miRNA expression profiles in fresh frozen and formalin-fixed paraffin-embedded tonsillar tumors
MicroRNAs are considered as promising prognostic and diagnostic biomarkers of human cancer since their profiles differ between tumor types. Most of the tumor profiling studies were performed on rarely available fresh frozen (FF) samples. Alternatively, archived formalin-fixed paraffin-embedded (FFPE) tissue samples are also well applicable to larger-scale retrospective miRNA profiling studies. ...
متن کاملExome Enrichment and SOLiD Sequencing of Formalin Fixed Paraffin Embedded (FFPE) Prostate Cancer Tissue
Next generation sequencing (NGS) technologies have revolutionized cancer research allowing the comprehensive study of cancer using high throughput deep sequencing methodologies. These methods detect genomic alterations, nucleotide substitutions, insertions, deletions and copy number alterations. SOLiD (Sequencing by Oligonucleotide Ligation and Detection, Life Technologies) is a promising techn...
متن کامل